

Ethanol Removal from Wine: Making More with Less

Linda Manera, Bithika Saha, Peter Torley, John W. Blackman & Leigh M. Schmidtke

School of Agricultural and Wine Sciences and National Wine and Grape Industry Centre Charles Sturt University

The National Wine and Grape Industry Centre is a research centre within Charles Sturt University in alliance with the Department of Primary Industries NSW and the NSW Wine Industry Association

www.csu.edu.au/nwgic

Alcohol Levels Going Up

- Australia
 - Red wines: 12.4% (1984) to 14.4% (2008)
 - White wines: 12.5% (1985) to 12.9% (2008)

Godden & Muhlack (2010) Trends in the composition of Australian wine, 1984-2008. Australia NZ Grapegrower and Winemaker. 558: 47-61.

Why Remove Alcohol?

- Wine style
- Health disease, injury
- Social impacts drink driving, violence
- Financial impacts some jurisdictions tax according to alcohol content
- Pressure to reduce alcohol consumption
 - International WHO: Global strategy to reduce harmful use of alcohol (2010) <u>http://www.who.int/substance_abuse/activities/gsrhua/en/</u>
 - State / national government
 http://www.alcohol.gov.au/internet/alcohol/publishing.nsf/Content/home
 - Non-government e.g. Australian Medical Association <u>https://ama.com.au/youthhealth/alcohol</u>

- Commercial ethanol removal techniques
 - SPP versus membrane
- Compositional analysis of wines
- Sensory comparisons

Spinning Cone

System Design

Stripping column

- Vacuum
- Low temperature
- High solids ok
 - Juice conc.
 - De-sulfuring

Normal Speed 350 rpm

Wine & Stripping Flow

Alcohol removal in 2 stages

Alcohol adjustment using the SCC in a two pass process

De-aromatisation: 0.04 atm/26-28°C

Dealcoholisation: 36-38°C

Ethanol base with aroma ~ 1% vol

Product strength > 50% v/v

Membrane Technologies

Process	Approx. size	Separation Mechanism	Driving Force	Application
Nanofiltration	0.5 – 5.0 nm	Sieving & charge effects	Pressure	Juice sugar removal
Reverse Osmosis	0.1 -1.0 nm	Semi- permeable membrane	Trans membrane pressure	Ethanol removal
Osmotic distillation (perstraction, membrane contactor)	0.03 – 0.5 um	Volatilisation & permeation	Vapour pressure gradient	Ethanol removal, aroma, water recovery
Pervaporation	Non-porous	Partial vaporization	Partial pressure differential	Ethanol removal, aroma recovery

Reverse Osmosis

Osmotic Distillation

- Also known as
 - Isothermal membrane distillation
 - Evaporative perstraction
 - Membrane contactor

Alcohol Adjustment (AA) Process

- Combination of two processes:
- Reverse Osmosis and Evaporative Perstraction

	Membrane (RO + Perstraction)	Spinning Cone
Wine requirements	Heat & cold stable Pectin & glucan free NTU < 50	Unstable wines ok High solids ok
Number of passes	Multiple	Two (Flavour, ethanol)
Strip ethanol conc.	<10% v/v (batch)	> 50% v/v (65% typical)
Potential ethanol removal/pass	0.7 – 1.5% v/v	0.5 – 15% v/v
Residence time	Minutes	10-20 seconds per pass
Process time	Hours/days	Hours
Flavour Impact	Some compounds pass through membranes	Recovered aroma in 1% vol added back to BW
Operating Temperature	20-22°C (RO) ~40°C (Perstraction)	~28°C (flavour) ~36°C (ethanol)
Water removal	High – but reclaimed	Negligible
Water consumption	Moderate (Perstraction)	Minor
Consumables	Membranes	N/A
Capital	\$\$	\$\$\$

Memstar 'Mini' Wine must be **VERY** clean Temperature 18-20°C (tank cooling) Permeate rate ~ 60 L/hour Strip water ~ 180 L/hr

Approx 40 hours to reduce 2% v/v in 10kL

Experiment 1 - Alcohol Adjustment

- Varieties
 - Chardonnay
 - Sauvignon Blanc
 - Shiraz

Initial Alcohol 12.2% 9.9% 13.7%

- Adjusted to:
 - 10% alcohol
 - -8% alcohol
 - -5% alcohol

Ethanol Content During Operation

Rate of Ethanol Reduction

Ethanol conc. in strip water

Sauvignon Blanc Headspace Composition

Sauvignon Blanc Headspace Composition

		Chardonnay		Shiraz		Sauvignon Blanc	
		5%	8%	5%	8%	5%	8%
Acid	Decanoic acid						
	Octanoic acid	-	+	-	-	-	-
	Propanoic acid	+	+ +	+ + +	÷	+ + +	-
Alcohol	(z)-3-hexenol	-	-	_	-	-	-
	3-methyl-1-butanol	-	-	_	-	-	-
	Beta-phenyl ethanol	+ + +	+ + +	÷	+ +	+ + +	+ +
Ester	Beta-phenyl ethyl	-	0	_	-		-
	acetate						
	Ethyl butyrate		-		_		
	Ethyl decanoate			_	-		
	Ethyl hexanoate					-	-
	Ethyl octanoate				-		-
	Ethyl-3-methyl butyrate		_	—	0	0	0
	Ethyl-2-methyl butyrate		-	_	-	-	
	Ethyl-s-lactate	-	-	_	_	-	-
	Isoamyl acetate		+		_		

Change 0-25%: - or + 25-50%: --- or ++ >50%: --- or +++

Change with Alcohol Concentration

- Decreasing alcohol concentration
 - Volatile HS conc. generally decreased
 - All esters decreased
 - Only a few exceptions (e.g. β-phenyl ethanol, propanoic acid)
- Alcohol Re-adjustment studies
 - Generally reduced conc. of all cmps
 - Reduced β-phenyl ethanol, propanoic acid
- Liquid Conc.
 - Generally reduced conc.

Experiment 2 - Alcohol Adjustment

Rank sum pref. (lowest = most preferred)

Difference Testing

Comparison		Significance
10% Mature Fruit	10% Post Mature Fruit	NS
10% Mature Fruit	10% Blended Mature Fruit	NS
10% Post Mature Fruit	10% Blended Post Mature Fruit	NS
8% Mature Fruit	8% Post Mature Fruit	Significant

Degree of grape berry ripeness will influence the perception of reduced alcoholic wines

An Integrated Approach Required

Acknowledgements

- Grape Growers and Wine makers of Australia
 - Through their investment body the Australian Grape and Wine Authority

Australian Government

* Australian Grape and Wine Authority

 Charles Sturt University & The National Wine and Grape Industry Centre

